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Boundary-layer flow between nodal and saddle 
points of attachment 
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University of Bristol 

(Received 31 March 1969) 

Asimplifiedexample of this type of flow was examined in detail by developing two 
series, eventually matched, one about the nodal point and the other about the 
saddle point, and also by finite differences, marching from the nodal point to 
the saddle point. It was found that the results of marching the two series were in 
agreement with the finite difference method. The series solution near the saddle 
point is not unique, but numerical evidence indicates that the correct solution is 
that which has ‘exponential decay’ at infinity, and that this type of solution, if 
such exists, automatically emerges when the finite difference method is used. 

1. Introduction 
Consider a surface and an inviscid irrotational flow as illustrated in figure 1. 

One would expect the fluid toZattach itself to the surface along the line APQRB, 
on which P and R are ‘nodal points of attachment’ where the fluid on the surface 
is flowing away from the points, and Q is a ‘saddle point of attachment ’ where 
in some directions the flow on the surface is towards the point and in others it 
is away from the point; the word ‘attachment ’ implies that the normal compon- 
ent of velocity is towards the body. 

If the origin is taken at  P, and x is measured along PQ and y along PC, with 
x along the normal to the surface, then the local flow near P can be described by 

U = ax, V = by, W = - ( a + b ) z ,  

with a and b both positive. 
Near & the flow is of the type (origin now at &) 

U = -u*x*, V = b*y*, W = - (b*-a*)Z*, 

with a* and b* positive; we must have b* > a*, in order that the flow may be 
of attachment type. 

Howarth (1951) studied the flow in the boundary layer in the neighbourhood 
of P, for a range of values of u / b  ( = c) ,  and Squire (1957) extended this by means 
of a series to regions further away from P for two values of C. Work analogous to 
that of Howarth was done by Davey (1961) in connexion with the point Q 
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and one of us (Robins 1968) has done the same near to Q as Squire did near to P, 
for two values of c* ( = a*/b*, namely 0.5 and 1). 

In this study we try to answer the questions: (1) Can the two solutions be joined 
together, that is, can the series round P be matched to the series around Q- 
indeed, is it possible to expand in a useful series round Q a t  all? (2) Is the ‘ex- 
ponential decay’ solution of Davey the correct one at Q in these circumstances? 
By exponential decay we mean that the velocity components at  large values of z 
differ from their limiting values by amounts which are exponentially small. 

FIGURE 1. Type of flow discussed. 

In  order to study these questions it was decided to attempt to solve the prob- 
lem in the case of a greatly simplified flow. First of all the surface is assumed to 
be a developable surface (or a plane) in which the required type of external irro- 
tational flow is somehow contrived to be of the form 

u = a x ( l - ~ ) + u z 2 ,  v = by, w = - ( a + b - - 2 u x ) z .  

P is taken to be the point (0, 0,O) and Q the point (1,0,0).  Thus near P the flow 
is of Howarth type and near Q it is of Davey type. 

This seems to be the simplest type of external flow that can be devised to 
exhibit the properties we wish to investigate. It has the advantage that the bound- 
ary-layer equations can be transformed into a form which is independent of y, so 
that the problem can be made quasi-two-dimensional. 

We may note that Banks (1967) attacked an analogous problem in which the 
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external flow at the 'start' was different from ours, the velocity components 
being in our notation U = a( l -X) ,  V = by. 

Thus the flow near to x = 1 was similar to ours. Banks expanded in a series 
near to x = 0 and used a Pohlhausen method to study the behaviour at larger 
values of x. Tests showed that the Pohlhausen method as applied by Banks was 
quite accurate and calculations indicated that the velocity profiles were already 
approaching closely to those of Davey by the time x had reached a value of 0-4. 

One implication of our work is indeed that whatever reasonable initial profiles 
occur at some starting point one will always arrive at a saddle point with the 
profiles of Davey, provided of course that there is no separation in between. To 
prove this rigorously would of course be a major task. 

It was decided to concentrate on just one ratio a/b ( = c )  namely 0.25. This was 
chosen to ensure that no separation occurs between P and Q which will happen 
if c > 0-42937 (=  co). A limited study was also made for a few other values of c 
including co itself. 

Two approaches were made. One was by expanding in a series in x round P 
and in a series in x* ( = 1 - x )  round Q .  The other was by integrating the equations 
between P and Q by finite difference methods, marching in the x direction from 
x = Otox  = 1. 

2. The equations of motion 

may be written 
The boundary-layer equations for flow over a plane or a developable surface 

u'uj:+v'u;,+w'u; = uux+ Vu,+vu;z, 

u'v; + v'v; + W'V:: = uv, + vv, + vv::z, 

u;+v;,+w; = 0, 

with boundary conditions u' = v' = w' = 0 when z = 0 and u' = U ,  v' = V when 

2.1. The series expansion We write 

u' = axu(x, c), v' = byv(x, c), w' = (bv)*w, 5 = z(b/v)&, c = a/b, 

2 = 03. 

and the equations become 

(1) 

with boundary conditions u = v = w = 0 for 6 = 0, u = 1 - x ,  v = 1 for 5 = co. 
The y co-ordinate drops out of the equations, though there is a velocity v' 
in the y direction. We write, with primes denoting derivatives with respect to 5, 

I uss-wuc-cxuux-cu2 = - c ( l - x )  (1-2x),  

vss-wvs-cxuvz-v~ = - 1, 

ws+cu+v++xux = 0, 

t.5 =flw + X f X )  +x2f;l(fl) + * * - 9 

v = S X )  + .gX) + x2gX)  + * - a ,  

w = - c(fo+ xfi + x"f2 + . . .) - (9, + xg, + X " ~  + . . .) - cx(f, + 2xfz - . . .). 
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These are substituted into the equations and coefficients of powers of x 
equated. We obtain a set of pairs of coupled ordinary differential equations all 
of which, after the first, are linear. The first pair is 

f:+(gO+Cfo) fa"+c(l- f '2)  = 0, 

9'; + (go + $0) g;; + ( 1  - 9 2 )  = 0, 

and these are in effect Howarth's equations. 
The later equations are 

f:+ ( g 0 + c f o ) f ~ - ( n + 2 ) c f ~ f ~ + ( n +  l)cf;f,+&'g, = F,, 

d + (90  + cfo) 9: - (29; + ncf;) gk + dg, + (n + 1)  C d f n  = an, 
with F, and G,  functions of f,, f:, f:, gr, gc, di.. . (r = 0 , 1 , 2 ,  . . . , n - 1).  

The boundary conditions are f, = g, =f: = g: = 0 for all T when < = 0, and 
fi = gh = 1,f; = - 1, and the remaining first derivatives zero when 5 = CQ. 

For the series in x* around the saddle point it is easy to show that the equations 
can be written in a form identically the same as given above but with c replaced 
bv -c .  
-0 ~ 

We write 
2.2. TheJinite difference method 

U' = UU(Z,  C), V' = VU(X,  <), W' = (bv)Bw, 6 = ( b / ~ ) f  Z. 

The definition of v (but not u) is the same as it was earlier; these slightly differing 
forms seems to be the most convenient for the particular methods chosen. 

The equations become 

uc5- WU5 - u2c( 1 - 22) - cx( 1 - 2) uux = - c( 1 - 2 x ) ,  

vu55-wv5-v2-cx(1-x)uvx = - 1, 

wc + cz(1- x )  u, + c( 1 - 22) u+v = 0. 

with boundary conditions u = v = w = 0 for = 0, u = v = 1 for 5 = co. Again 
the co-ordinate y has dropped out. 

At the start we put x = 0 and the equations reduce to a form which is essentially 
that of Howarth. We first solve these by the finite difference method and then 
'march' in the x direction taking small steps until we reach x = 1. 

The method of solution is fully implicit. No assumptions about the values of u5 
and vu5 at { = 0 (denoted by ( u ~ ) ~ ,  ( v ~ ) ~ )  are made. Here the method differs from 
the finite difference method of Smith & Clutter (1962) who give them trial values 
and then adjust these until the outer boundary conditions are satisfied. At each 
x step we put u = v = 0 at 6 = 0 and u = v = 1 for a sufficiently large value of 5 
and the values of ( u ~ ) ~  and ( v ~ ) ~  then come directly out of the calculations; these 
involve essentially the inversion of a tri-diagonal matrix at each step. We do, 
however, need to assume a pair of velocity profiles at the start of each step; these 
are usually taken as the values at the previous step except at  the very beginning 
when almost any reasonable assumption will suffice. Once the assumption of 
profiles at any step has been made the equations for this step are solved by itera- 
tion, ceasing when there is no change in the profiles from one iteration to the next. 
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3. Solution for c = 0.25 
3.1. The series 

The first six functions f o  to f 5 ,  go to g5 were found both for the nodal point (c = 0.25) 
and the saddle point (c = - 0.25), the latter functions being chosen to give ex- 
ponential decay. The values of f:(O) and g,"(O) are shown in table 1 for each of the 
values of c. It will be seen that the nodal point series for the skin friction com- 
ponents ( u ~ ) ~  and (T+)~  appear to be well behaved, with the values of f"(0) and 
g"(0) decreasing with increase in r ;  the series appear to be converging fairly 
rapidly when x is less than about 0.8. The saddle point series, however, appear 
to be asymptotic, reliable results being obtainable only for small values of x*, 
say less than 0.3. Despite this it was possible to obtain the skin friction components 
over the whole range 0 < x < 1, matching to 3 figure accuracy, or better in the 
region of x = 0.7. 

The values of the skin friction components are shown in tables 2 and 3, which 
show how the matching occurred. 

c = 0.25 
A 

f,"W 930)  
0.80514 1.24761 

0.3301 0.0074 
0.0535 0.0044 
0.0178 0.0022 
0.0072 0.0012 

- 1.2178 -0.0385 

c = 0.42937 
I 

h 7 

f,"(O) g m  
0.94678 1.26112 

- 1.5663 - 0.0749 
0.4508 0~0100 
0.0845 0.0094 
0.0349 0.0068 
0-0189 0.0050 
0.0118 0.0037 

c = -0.25 - 
0.26795 
f,"(O) 

+ 0.4365 
- 0.8638 
- 0.0159 

0.4662 
- 0.0505 

v 
g m  

1-22513 

0.0473 
0*0007 

- 0.0629 
0.0116 

- 0.0079 

c =  - 0.42937 

f,"@'o 
0~00000 

+ 1.3163 
- 1*0000 
- 0.8720 

TABLE 1. Wall derivative of functions fn and g, for 
c = +O-25, kO.42937. 

g m  
1.22732 

0.0793 
0.1631 

- 0.0667 

3.2. The ftnite diflerence method 
The initial solution (for x = 0)  gave Howarth's results and the step-by-step 
procedure (of length 0-05 in x with intervals in <also equal to 0.05) gave no diffi- 
culties, and when the point x = 1 was reached the solution agreed closely with 
that of Davey for c = - 0.25. A comparison with the series solution for the skin 
friction components is shown in tables 2 and 3. 

The results make it clear that the ultimate solution at x = 1 is indeed Davey's 
'exponential decay' solution. Thus both forms of solution and the close agree- 
ment between them show that in this case the answers to the two questions 
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Series about Series about Finite 

0.00 1.2476 - 1-2477 
1.2458 0.05 1-2457 - 

0.10 1.2438 - 1.2439 
0.15 1.2420 - 1.2421 
0.20 1-2403 - 1.2403 

1.2386 0-25 1-2385 - 
0.30 1.2369 - 1.2370 
0.35 1.2353 - 1.2354 
0.40 1.2338 - 1.2338 
0.45 1.2323 - 1.2324 
0.50 1.2310 - 1.2311 
0.55 1.2297 1.2289 1,2298 
0.60 1,2285 1.2281 1.2286 
0.65 1-22751 Closest { 1.2273 1.2276 
0-70 1.2266 ~-------f 1.2266 1.2267 
0.75 1.2258 match 1.2259 1.2260 
0.80 1.2251 1.2253 1.2254 
0.85 1.2247 1.2250 1.2250 
0.90 - 1-2248 1.2249 
0.95 - 1.2249 1.2249 
1.0 - 1.2251 1.2252 

TABLE 2. Values of (l/by)/(u/b)’ (aw’/&), by series about x = 0 and x = 1, 
and by finite differences 

X x = o  x = l  differences 

Series about Series about Finite 

0.00 0~0000 - 0~0000 
0.05 0.0373 - 0.0373 
0.10 0.0687 - 0.0687 
0.15 0.0945 - 0.0945 
0.20 0.1150 - 0.1150 
0.25 0.1306 - 0.1306 
0.30 0.1413 - 0.1413 
0.35 0.1477 - 0.1477 
0.40 0.1499 - 0-1499 
0.45 0.1484 - 0.1484 
0.50 0.1434 - 0.1434 
0.55 0.1354 0.1378 0.1354 

0.1259 0.1248 
0.65 0.1116 0.1123 0.1118 
0.60 

0.70 0.0968}c--( 0.0973 0.0971 
0.75 0.0805 0.0812 0.0811 
0.80 0.0634 0-0643 0.0643 
0.85 0.0458 0.0471 0.0471 
0.90 - 0.0303 0.0303 
0.95 - 0.0144 0,0144 
1.00 - 0~0000 0~0000 

TABLE 3. Values of ( l / a )  (v/b)* (&’/az),, by series about x = 0 and x = 1, 
and by finite differences 

X z = o  x =  1 differences 

0*1246 Closest 
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proposed earlier are: (1) Starting at  the node one ends up with Davey’s solution 
at the saddle point, and a series round this point is possible but is probably an 
asymptotic series. (2) The correct form of solution a t  the saddle point is indeed 
that which has exponential decay. 

4. Discussion 
The series solution starting at  x = 0 seems to lead to no difficulties and the 

series for the components of wall friction appear to be convergent. 
Each solution for all ordersf, and g, is unique and has exponential decay to the 

appropriate boundary condition at  = co. Those starting at  x* = 0 (x = 1 )  
going backwards are not unique but the solutions chosen were those which ex- 
hibited exponential decay. The sums of the series in x* for the skin friction when 
c = - 0.25 have a peculiar oscillation in the way they diverge from each other. 

e 

X 

FIUURE 2. Skin friction in x direction. S, denotes the s u m  of r terms 

One usually finds in summing such an expansion as this that the sums for each 
additional term retained are alternatively one side or other of the ‘correct’ 
solution or else approach it smoothly from one side. Here they are in pairs, two 
in succession going to one side and then two in succession going to the other side. 
See figures 2 and 3, which also show the ‘ correct’ solution over the whole range. 

of the series about z = 1. 
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However, the series solutions about x = 0 and x = 1 can be matched fairly 
closely near x = 0.7, and very closely indeed if the method of accelerating con- 
vergence due to Shanks (1955) is applied to the former. This method seems to 
have no value in the series about x = 1. The final results agree closely with the 
finite difference results. 

What appears a little puzzling is that we seem to be able to start at  the saddle 
point end and to go some distance ‘upstream’. For comparison a finite difference 
calculation starting from this end was also tried. The solution duly came out to be 
the same as Davey’s at  z = 1 (i.e. the start) but on moving upstream only two 
steps were possible before the method began to fail, as exhibited by the large 
number of iterations required t o  give convergence. 

1.25 

1.24 

- - 
2 Id - 
A 1 . 0  - 1-23 

I.$ 

1.22 

1.21 I I I I I 

X 

FIGURE 3. Skin friction in y direction. S, denotes the sum of T terms 
of the series about x = 1. 

5. Eigensolutions 
As we have shown, it seems possible to start at the saddle point and to travel 

a certain distance upstream without appreciable error. This suggests that the 
eigensolutions in the expansion around z* = 0 have not yet become importa.nt 
within this distance. 
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To investigate the eigemolution near to x* = 0 we write in (1) 

83 1 

u = u,+u,x+ ... +xyu,+u,x+...)+ ..., 
2, = w0+2,,z+ ...+ x"q)++x+ ...)+ ..., 
w = w,+w,x+ ... +sh(W,+W,x+ ...)+ ..., 

where for convenience we have replaced x* by x; the series 
uo+zclx+..., v,+w,x+ ..., w,+w,x+ ... 

are the same as those in (2). 
Substitute in (1) and equate the coefficients of zA and we find 

(3) I U& - wou& - WoUog - c(2 + A )  uouo = 0, 

G'o5'o5 - w& - q)"o'o5 - (u,cA + 2w,) v, = 0, 

W0,+C(1+A) UO+G = 0, 

with boundary conditions U, = V, = W, = 0 for [ = 0, U, = V, = 0 for I; = a. 
These homogeneous linear equations with homogeneous boundary conditions 

have solutions for any positive value of A but there is only a discrete set of values 
of h if 77, and V, are to have exponential decay a t  infinity, cf. Libby & Fox 
(1963). We note that U, and V, may have constant multipliers, one of which is 
arbitrary. 

Equations (3) were solved for c = - 0.25. To fhdtheeigenvaluesa trialanderror 
method was used to estimate the value of h which gave exponential decay. By 
this means it was found that the fist eigenvalue was A, = 9.810. Higher values 
were difficult to find without a more refined procedure than that undertaken, 
and the next value was only found roughly. It was A, = 15.9. The equations are 
coupled through W, and the computations are long and tedious. The first 
eigenvalue for c = - 0.42937 was also computed and the value is A, = 4-81. 

The arbitrary factor of (say) U, (and the corresponding one for V,) in the solu- 
tion lead to the expected indeterminancy in the solution upstream of the saddle 
point x* = 0, but the power of x* for the lowest eigenvalue (9.810) might have 
led one to believe that one could have got further upstream than x* = 0.3 in the 
original series without sensible error. There is however no knowing how great 
the arbitrary multiplier of U, should be. 

It was indeed hoped to find an approximate value for this multiplier by the 
present work, but such a high value of A,, together with the asymptotic nature of 
the original series, seems to preclude this. 

The work in fact shows two kinds of indeterminancy. The first is due to the 
arbitrary multiplier of the eigensolutions, and this is genuine and to be expected, 
The second is due to the asymptotic nature of the series, and presumably arises 
from the kind of mathematics used in the solution. 

6. Exponential decay at infinity 
Brown (1966) considers a flow which at  large distances x downstream approxi- 

mates to Hartree (1937) flow with /? = - 0.15, and gives some numerical evidence 
for believing that at  x = co the correct limiting solution is the one with exponential 
decay. In  the problem considered here the limiting position is a t  x = 1 and we 



832 J .  C. Cooke and A .  J .  Robins 

have shown likewise that the limiting solution a t  x = 1 is the one of Davey’s 
which has exponential decay, and this is the solution which emerges from the 
finite difference method. It may be conjectured that the finite difference solution 
will always pick out the exponential decay solution if such exists. To test this in a 
special case we solved Hartree’s equation 

f”’ +ff” + p( 1 -f’2) = 0. 

with /3 = - 0.15 by this method. 
As already described the procedure in the finite difference method is to 

assume a velocity profile and iterate on the equations of motion, thus changing the 
profile on each iteration until there is no more change. It might be thought 
possible, therefore, that when the solution is not unique, the final solution would 
depend on the initial profile chosen. Our numerical experiments suggest that this 
is not so, at least for a wide range of initial profiles, and we always seem to obtain 
the Hartree solution. In  this case (p  = -0.15) there is another solution which 
has exponential decay, namely the so-called lower branch solution in which there 
is reversed flow near to the wall (Stewartson 1954). In  an attempt to obtain this 
solution we assumed an initial profile which had reversed flow near to the wall, 
but we still obtained the Hartree solution. To test further we started with an as- 
sumed profile very near indeed to the known lower-branch solution for this value 
of (Rosenhead 1963, p. 250). This time the reversed flow and the boundary-layer 
thickness grew indefinitely, so that the method failed, but at least it did show 
that the lower-branch solution is in some sense unstable, and this leads one to 
believe that the solution cannot exist in a real flow. One might argue that the 
iterative procedure in the finite difference method is in some sense a marching 
procedure (perhaps, though, marching in time) and this makes it seem likely that 
the finite difference solution may give the correct stable solution and that other 
solutions, although satisfying the differential equation, cannot exist in a real 
steady flow (see appendix A). 

As we have pointed out the finite difference method always seems to give the 
exponential decay solution if one exists. If two exist it gives only one of them. 
The next question is then: if an exponential decay solution does not exist, but 
only one with algebraic decay, will the method give this solution? Algebraic 
decay solutions do occur as Brown & Stewartson (1965) pointed out; one example 
is the solution of the equation 

f” -r + 4( 1 -f’2) = 0, 

which is given in Rosenhead (1963), the decay being like <-8. This was also tested 
(with a straight line initial profile) and the solution of Rosenhead did indeed 
emerge. 

7. Other values of c 7.1. The series 

It was thought worth while to investigate further Davey’s critical case, that is 
c = co = - 0.4294 for which f:(O) = 0 ,  since it was thought that special features 
might emerge for this critical value. It was found that an improved value for 
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co was -0.42937, one more decimal place than was given by Davey. No real 
difference did emerge from this investigation. The divergence of the saddle point 
series is more marked and only the f i s t  four terms of the series were calculated, 
because the values of f;(O) and gi(0) began to increase rapidly for n > 3; it 
appears again that the saddle point series are asymptotic, good results being 
obtainable for small values of x* from the f i s t  four terms of the series. Seven 
terms of the nodal point series were calculated for this value of c, and after apply- 
ing Shank’s (1955) transformation to the terms of the nodal point series it was 
again found possible to match the series for the skin friction components, this 
time in the region of x = 0.85. 

The values offi(0) and ql (0)  for this case are given in table 1. 

7.2. Finite differences 

Calculations were tried for c = 0.75 for which Davey’s solution gives reversed 
flow. Here the method proceeded satisfactorily as far as x = 0.75 but then began 
to break down. It was found that ( u ~ ) ~  was decreasing rapidly and if { ( ~ ~ ) ~ ) 1 . 3  was 
plotted against x a very nearly straight line emerged. Thus the value of x a t  which 
the x component of the skin friction vanishes can be found by extending this line 
to the point where = 0. If we call this value X, we find that xs = 0.773 and 
so this is the point where separation of the flow is to be expected. Thus we find 
that (ug), behaves like (X~--X)~”~ with x, = 0.773 near to separation. However, 
without further refinement, which was not undertaken, it is not possible to affirm 
that the index is 0.77 to any great degree of accuracy. The values of (vC),, showed 
no sign of a singularity and certainly were not behaving as though ( v ~ ) ~  would 
vanish at  the separation point. 

Of course if separation takes place in this manner the assumed external flow 
will no longer be valid and the computation is no longer applicable to the physical 
situation. Davey suggests that the saddle point now becomes a nodal point and 
that the separated flow is convected downstream round the body as a vortex 
sheet which will probably roll up. 

A similar computation was made for c = co = 042937 and it was found that 
one arrived at 1: = 1 without difficulty and that the solution there was close 
to that of Davey, which has ( u ~ ) ~  = 0. The skin friction curves again fitted closely 
to those found from the matched series solutions. This time there was no sign 
of any singularity as x = 1 was approached, and (us), approached zero quite 
smoothly and almost linearly. 

We also tried a value of c nearer to co than 0.75, namely c = 0.5, which should 
just give separation. This time the zero of (u& was at  x, = 0.926 and the singu- 
larity was less severe than with c = 0.75; ( u ~ ) ~  behaves like (3, - x)O’*6 approxi- 
mately. Once more there was no singular behaviour by ( v ~ ) ~ .  

53 F L M  41 
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8. Conclusions 
A simplified flow between a nodal point and a saddle point is considered, by 

means of series expansions about the two points, and also by a marching finite 
difference procedure. It is found that the two series can be patched together 
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reasonably well, though that about the saddle point seems to be asymptotic. The 
first two eigenvalue solutions of the latter are investigated. 

It is found that, provided separation does not take place, the particular solu- 
tion of Davey which has exponential decay appears to be the correct one at  the 
saddle point. (The solutions are not unique in this region.) Examples are given to 
suggest that the finite difference procedure employed gives a unique solution 
which turns out to be the exponential decay solution if one exists. 

Two cases in which the flow separates are examined. At separation the skin 
friction in the x direction is singular and vanishes but there is no sign of vanishing 
or singular skin friction in the y direction. 

Appendix A. The effect of linearization 

it step-by-step after linearizing the equation of motion. 
In  our iterative finite difference scheme we guess an initial profile and improve 

Suppose, for instance, that we are solving by iteration the equation 

- uuz + uyy = 0 (A 1) 

and at one step the value of u is d o )  and a t  the next step it is dl). One common way 
of linearizing the equation would be to write it 

(A2) - uco)up + &) = 0 
1111 

where do) is known and dl) is now to be found. Equation (A2) is now linear and 
is solved by finite differences again and again using an improved do) at each step 
to obtain an improved &). 

Now we may write 

- .u(o)ug’ + u$J = - &&) + .I/; + up (u(U - uco)) 

and so solving (A2) is equivalent to solving (Al)  with an additional term; in 
fact to solving 

au 
at 

-uu?&+u,,+us- = 0 

interpreting each iteration step as a time step with unit time between steps. This 
is the sense in which we say our procedure could imply a marching in time. 
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